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Lecture II

Theory: Two and Three Nucleon Systems

! Introduction to the Covariant Spectator Theory.

! How are the bound state and scattering equations

obtained? What are the normalization conditions?
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! Elementary particles (those in the Lagrangian) produce poles in the
scattering amplitude

! Nuclei are not elementary (comment:  in some, very low energy EFT
calculations, they may be treated as effective particles).  No single
Feynman diagram will have the bound state pole; it must be generated
from an infinite sum of Feynman diagrams, much as the geometric series
generates a pole:

Therefore we must sum up infinite series of diagrams in order to treat
nuclear bound states.

! Nuclei arise from the NN (and NNN) interactions.

! Nucleon resonances are frozen out (i.e. they do not needed to be treated
dynamically, but can be put into the interaction).
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! scattering amplitudes: an infinite sum of interactions V

! if a bound state exists, there is a pole in the scattering amplitude

! equation for the bound state vertex functions:  obtained from the

scattering equation near the bound state pole

! the bound state normalization condition follows from examination of

the residue of the bound state pole



Equivalence of the two-body BS and CS equations

! In both cases, the two-body equation has the same form

Equate the amplitudes, and determine the relation between the
kernels

or

! The solutions of one equation are identical to the solutions of the
other, provided the kernels are properly related

MBS (p ', p;P) = VBS (p ', p;P) + VBS (p ',k;P)GBS (k;P)MBS (k, p;P)!
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MCS (p ', p;P) = VCS (p ', p;P) + VCS (p ',k;P)GCS (k;P)MCS (k, p;P)!

Equivalent summations of the generalized ladder sum

! To 6th order, the generalized ladder sum is

! In the BS theory, these terms require the following irreducible
kernel:

! In the CS theory, the kernel is

2nd order 4th order
6th order



Effective theory; estimate of the bound state mass

! Take an effective short range interaction (treated as a contact
term)

! The bubble sum is

! This means that all the Feynman diagrams in the series are the same
size - the physics is non-perturbative.

! Bound states arise in field theory from the infinite sum of
Feynman diagrams.
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Estimate: bound state mass in 1+1 dimensions (1)

! Work in 1 time and 1 space dimensions (         ) to remove
divergences;  most results carry over to 1+3 dimensions

! The bubble in 1+1 dimensions is easy to calculate
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Estimate: bound state mass in 1+1 dimensions (2)

! Assume equal masses and weak binding: m1=m2=m; P 2=4m2
  $ % 2;

m » % ;

! The binding energy is approximately

! The contact term must be negative (attractive) for a bound
state to exist.
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exercise: work this out for 1+2 dimensions

The one-body limit

! If m1 &!, the equation should reduce to a one-body equation for m2 with a
potential independent of the coordinates of m1.  This is the one-body limit.

! In scalar ' 3 theory, the generalized ladder sum has this property to each
order.  The proof is in my textbook “Relativistic Quantum Mechanics and
Field Theory“. Diagrammatically, for the 2nd and 4th orders

! For scalar theories in the m1 &! limit, the OBE approximation in CS theory
gives the exact result for the generalized ladder sum. 

exercise: prove this



Cancellations: '4 theory in 1+1 dimensions

! Study a simple example: '4 theory with one interaction

! On shell scattering to 2nd order:

! B(s) already evaluated previously:

! where
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Interesting limits

! m1=m2=m; P 2=4m2
  $ % 2; u = % 2, and m » %

! m1 » m2 » %; P 2=(m1+m2)
2 $% 2; u=(m1$m2)
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exercise: evaluate these bubbles in 1+2 dimensions



Evaluation of the CS bubble in 1+1 dimension (1)

! The CS bubble has particle #1 on-shell; there is no crossed

bubble

! This can be written in the convenient form
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only pole in the lower half-plane and hence 

this integral gives the exact CS result

Evaluation of the CS bubble in 1+1 dimension (2)

! This can be also be written

! Interesting limits (as before)

• m1 » m2 » %; P 2=(m1+m2)
2 $% 2

The correction                      is much smaller than the term cancelled by
B(u).

• m1 = m2 = m;  P 2 = 4m2  $ % 2

! Conclusion: the CS equation (in the scalar case when m1 -> !) builds
in the cancellations.
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research exercise: this bubble diverges in 1+2 dimensions; how can it be regularized?



Freeze-out of nucleon resonances (in the CS theory)

! Nucleon resonances can be excited when the mass of the off-shell

nucleon becomes bigger than (m + m")
2.

! However, in the CS theory, the mass of the off shell nucleon is

bounded from above.  For two nucleon scattering at lab energy of W

> 2m (with k the internal relative nucleon three-momentum),

! Hence, nucleon resonances are not explicitly excited unless

! This is fundamentally different from Hamiltonian dynamics, where

they are excited for all W.  The internal momentum must only be

larger than a minimum value
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THE RIGHT-HAND NUCLEON
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!  Low energy NN scattering  does

      not “see” the resonances
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Resonances frozen out because “left hides right”

! Compare the “left-hand-side” of

two resonance structures

! Under certain conditions they are

indistinguishable

! in this case, the two functions

agree on the left-hand side to 1%!
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! The normalization condition for the bound state vertex

function also follows from the scattering equation.  First find

the nonlinear forms of the equation:

! Then substitute the pole part of M and expand (away from

the pole, i( -> 0 and           :
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Relativistic normalization condition (2)

! The double poles give the bound state equation (again)

! The single poles give the normalization condition:

exercise: work through these details



! Define three-body vertex functions for each possibility

! Then three body Faddeev-like equations emerge

automatically.  For identical particles they are:

CS equations for three-body systems*

   

      

this amplitude already 
known from the 2-body sector

*Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)

this particle is 
the “last” spectator
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Applications of the CS theory

! Gauge invariance can be treated exactly (lecture 4)

! Excellent fits to the NN data below 350 MeV (with )2 # 1.06 - lecture 3)

! Excellent description of the 3N binding energy with no explicit three

body force (lecture 3)

! Excellent fit to all deuteron form factors to Q2 ~ 6 GeV2 with one free

parameter in the current (lecture 4)

! Satisfactory description of "N scattering and various quark model

calculations (not discussed)

! Exploratory study of d(e,e’p)n in Born approximation*

! To do (work in progress)

• photodisintegration and electrodisintegration of 2 and 3 body nuclei

*J. Adam Jr., FG, S.Jeschonnek, P.Ulmer, and J.W.Van Orden, 

                              PRC 66:  044003 (2002). 



Conclusions

! Few body nuclei are composite systems. They must be described non-

perturbatively & integral equations for amplitudes in p space.

! The features of a relativistic description depend on the formalism.  In Field

form -- all generators are kinematic at the cost of negative energy states

(twice as many degrees of freedom).

! Physics depends on whether or not nucleon resonances are explicitly excited

(recall: “left hides right”).

! A theoretically sound description of few-body reactions requires FSI and

MEC and NNN forces consistent with the two-body dynamics assumed.   We

will return to this in the subsequent lectures.

! The CS theory can serve as a framework for the use of any method. Take

nonrelativistic limit to interpret correspondence with relativistic theory.
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